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A generalized Ginzburg-Landau functional for systems
with correlation
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Abstract. Using the theory of effective action a generalized Ginzburg-Landau functional for
systems with correlation is derived. The Bardeen—Cooper-Schrieffer theory is obtained as
a special case.

1. Introduction

The discovery of high-temperature superconductivity in La~{Ba, $1)-Cu~O [1] and in
other oxide systems has led in recent years to further extensive studies of the Hubbard
model [2] to examine whether this model is suitable for explaining the magnetic and
superconducting behaviour of these systems (see, e.g., [3]). Since apart from special
cases [4] the single-band Hubbard model is not exactly solvable in dimensions higher
than one, it is necessary to use approximations.

In this paper we apply the method of effective action (see, e.g., [5, 6]) and obtain a
Ginzburg-Landau functional which depends on two real and two complex fields and
which makes it possible to discuss the phase transition of our model. The Ginzburg-
Landau functional for Bardeen~Cooper-Schrieffer (BCs) superconductors is obtained
as a special case.

2. Model

The s-band Hubbard model in the field representation is given by

A= Hy+ A, .,
with A o

. - -v? )} ‘ : -
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Bo= 3 [ ariso (G- 90 o
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v

where 7, (#) and 1,(r) are-the creation and annihilation operators for an electron with
spin ¢ at the position r, —V?/2m is the kinetic energy operator of an electron (% = 1) and

0953-8984/91/030347 + 10 $03.50 © 1991 IOP Publishing Ltd 347



348 U Lindner

i is the chemical potential, V denotes the periodicity velume; this means that we use
periodical boundary conditions. A, describes the correlation, i.e. U is the repulsion
energy between electrons with spin T and | at the same position. If we use instead of U
an attractive coupling constant —g < 0 between T and | spin electrons we obtain the
BCS model [6].

The interaction with an electromagnetic field is introduced in a gauge-invariant way
by minimal substitution (¢ = 1):

Vo>V —ied 2)

and the vector potential A(r) is treated as an external source. (The charge of an electron
is denoted by e.) Then the Hamiltonian operator

~

HZET.JV“'B’“(’) (= 55 (7~ et ~1t) o)

+ uj Er 1) 1) P $1 () (3)
1’4

is invariant under the gauge transformation
Vo(r)— exp(ieA(r)) ¥o(r) = ¥5(r)
AN — A(r) + VA(r) = AL(r).

This means that ¢/, and A" have the same equation of motion as P, and A. (The phase
A(r) does not depend on the spin because of the structure of Hy.)

(4)

3. Derivation of a generalized Ginzburg-Landau functional

Using the holomorphic path integrals [7] and Wick rotation the partition sum is given
by

Z=wiexp(-BAY = [ | DY By exp(~SUY. 1) ©

$(0) = - ()
with 8 = 1/kzT and

exp(—3S) =exp (-m Jﬁ dr > | d*ry,(r1) (%—ﬁ(v —ieA)? —,u) ¥, (r, r))
0

e=t.l v
a - -
xep(~u[ dt[ ErpEOTEDVEDIVED) @
0 v

where ¥ and ¢ are the Grassmann variables. The four-fermion interaction term in
(6) can be expressed in terms of complex scalar fields (the Hubbard-Stratonovich
transformation):

exp - j:drm[{rﬁ,w}}) - | H 99199, &

X EXP[-(YJ)ZJd4Y¢?W1 +(—11U)1/2Y1Jd4x(‘ﬁ11i;¢¢-1-+IPJ,‘PT(P?‘)
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—(Yz)zjd4x @3 @2+ (A 1)1 Yzf A*x (Y19 @2+ v Y1 @8)
) _13 1/2
—(r3) Jd“x PF@s+ (_2—“ U)
X ysfd“x [(Wrws+ 9w )es + (@19 +v19,)es]
2 i/2
- (}u)zfd“x @I+ (—2‘1 U)

><?4Jd4x[(ﬂ?’1W1"‘h‘i’x)@%"‘(’!"'ﬂﬁ—#;L’i’l)ﬁpﬂ] (7

where we use the notation

fd4x - f: de L dir ®)

and where the constants A;, i = 1, . . . , 4, fulfil the condition =%, A; = 1. The constants
A;are a consequence of the arbltrarmess of the decomposition c of the four-fermion term.
(Further @-fields do not occur because terms with wT ¥y and ¥,y are zero.) The fields
¢; and @, are real, obviously. The fields ¢, ¢{ describe a Cooper pair, the fields
@3, @, correspond to the transverse components S*, §~ of the spin density, ¢ ; denotes
the density of electrons and g, is the longitudinal component §¢ of the spin density. The
normalization constants C; are given by

Ci=[90r 9pie0 (- 0 [axore) =14 )

where we need the constants y; to ensure the correct dimension of the auxiliary fields.
Of course, the physical results have to be independent of these constants.
Now we introduce sources for the auxiliary fields in the usual way and obtain

zw,;*n:}ebq,hgmﬁl@w%m fl@w Qﬁqﬂszlr_
Xexp{—fd“}' EH'!,UG (i—“"('V'—le'At)2 ) a]
Xexp[ —(?1)2Jd4x @@+ (—A Uy,
X jd4x(li_1111;1¢1+'¢"ﬂ¢’11~§0f‘ +het +itel)
—}’%Jd‘;x@;?z‘k(lzwl’q}’z

X J‘d“x (W@ @2+ ¥ ¥ 103 +208 +ji@2)

Ay \2 - -
—(}'3)2jd“x (Ps*%‘l‘(““in) std4x{(WTW1 +Y,9,)9;
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Putting all sources to zero we get the partition sum
Z= Z[{jlj*}]j=j’=0-
For the Lagrange function in (10) given by
L=Ly+L,
we have (compare (6))
5 Vv :
= — 3 0 —_——— + Ipk ']
Ly Ld r[ > w"(ar - ﬂ)fﬂa %(Yl) (A

o=1,1 2
"and

=—1d ~e. = (Vy e - 2)
L= J.,,,d rL;T',l(Zm[w“vw" (vw‘f)w"M_FZPnWOWoA

_(“ALU)UZ}’J(U’_H;N’H'WL'PW??)
_(lzml"wz(‘}-’ﬁh@ﬁ'4_’1’1“1@35)

A 1/2 _ _ - -
_(—?w) al(F 391+ 99 )@s + (B 91 + 9, 9,)9t]

A 172 _ - - - u
- (?4 U) vl gy —w v es+ (v vy -9 ¥ )@l ]]-

Using the Fourier transformation

1 .
Yol(r, T)EW% Yolk,nyexplitk - r—§,7)]

{analogously, for the fields ¢, i = 1, .. ., 4) we get for the free action
ﬁ - .
[(arLo==3( S otk @i =& )von)
¢ kn Mo=1.1
4 .
#3202l meition)).
i=1

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Thus the propagator of an electron with spin ¢ and four-momentum (k, #) is given by

1/(w,—iE,)  with w,=k*/2m~u and &,=(a/f)(2n+1), n=0,%1,...

and the propagator of the auxiliary fields is given by
(y)? for i=1,....4.

(17)

(18)

The propagators of ¢ -fieldsdo not depend on the four-momentumbecause the Lagrange
function (13) does not contain the corresponding kinetic energy terms. One obtains
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the Feynman rules by substitution of the Fourier decomposition of the fieids in the
interaction Lagrange function (14). We use the following notation:

4 @2 @3 2 Wy (') A
field — S e N
propagator 1 1 1 1 1 1

(v1)? (v2)? (va) (ve)? —iE, wg—ik,

vertex —>'< *’{ »< % fL* 7}\
T
R AR 2 CALLA
71(—§;,—U) Yz(ﬁ_v) y;(%)/ »{ —%(kﬂc’)

.LU) i g? -
¥4 (2[3‘/, " 2m

(19)

2]

In this theory any connected Feynman graph consists of a single loop, on which any
number of vertices can be placed. The generating functional for the connected Green
functions is defined by

W/, 7*3 = In(Z[{, 773D (20)
The Legendre transformation of W[{j. j*}] reads

. _
M., 92:4N= [ 4 3 Gipt +9.57) = W) @)
i=t
where ¢, () means the expectation value of @(y) in the presence of the sources ji(x):
@5, (0) = {@ (X))o (22)
and I'l{@ . @ ; A}] is the effective action. The partition sum is then
Z= Z[{f»f*}]j.=ﬁ=,.. sjiml = exp{ — r[{(Pc.Q?f ;A}']}jl=.f.=j;=o (23)
and as equations for (@, (x)}; - = @2(x),i = 1, .. ., 4 we obtain generalized Ginzburg-
Landau equations:
[al"/atp,-c(x)]|h=',-;=g=0, [8T/6q3,";(x)]]h=1;=0=0, i=1,...,4 (24)

In order to caleulate the Ginzburg-Landau functional I[{¢., @7 ; A}] we consider the
generating functional for the proper or one-patticle irreducible diagrams

gt iall= [ 2 (110 Tl 4) )

that we can find by perturbation theory. We consider all one-loop diagrams with two
and four external lines and we are only interested in graphs for which the sum of external
momenta is zero. {Diagrams with an odd number of @-lines do not give contributions
for temperatures T # 0.)
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We compute firstly the coefficients Vi(g, —q; A = 0) proportional to ¢; (9)@ . (—¢)
in «[{p@. @*;A}]. Using (10), (17) and (19) we have with p = (p, n) for A =0 and

g + q' = 0 the following two-point graphs:
I

7-7 r-q
The sum over the internal lines yields for all diagrams of (26) the same result:
8 ) 1 }

T = * - =a+ba?+0Og* 7

K ﬁ"%{% i€, p( 3(=p)) @, +iE, ¢+ 0((¢") @n
with

1 1

L e g (28)
and

b=ﬁ%§{wpii§n#%(q%)zﬁ}

1 ~w, 1 w;-& 1 (p-g

"ﬁvz{(wg T £ am (co @y (4)2( ) } (29)
We restrict onrselves to second-order terms in g because the terms with |g] <€ 1 give the
main contributions to the sum X3,

The last two graphs in (26) have to be counted twice since for the fields @; and ¢,
two vertices exist (compare (19)). The factor 2 cancels with the factor } from the product
of the vertices. Both graphs which yield the coefficient ¥3* cancel each other and
therefore they are not drawn in (26). Thus we obtain for the coefficients

Vi(g, —q;;A = 0) = FL,U(y,)*(a + b(g)?) (30)
where the upper sign is valid for/ = 1, 3 and the lower sign for i = 2, 4. The coefficients
Vi{g, —g; A = 0) at| g, (g)]? in the effective action are

Vi(g, —q: A =0) = (y)*[1 = L,U(a + b(g)*)] (31
with the same convention over the signs as in equation (30).

Secondly, we consider the four-point termsin I[{g,, ¢ F; A}] forA = 0. We have the
following diagrams:

q E - ’

o<,
iy

Pt y h " Vo

M

3
v

Y

-g [

Y

Y

R (32)
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The graphs in the upper line of (32) represent the coefficients Vii(q, —¢', ¢,
99 929 (9o (~9)0. (¢ o (~a+ ¢ ~¢)inTHe,, ¢*;A = 0}]. From
these we obtain, .g., the coefficient at (@, {.)* puttingg” = ¢’ = ¢. The last two graphs
in the upper line of (32) are counted twice again, and similarly the graph which yields
the coefficient V3** because two vertices belong to the fields ¢, and @4, and the
summation over all internal lines gives for all four-point diagrams (32) the same result,
asaccording to (16) and (17) the propagator of an uncorrelated electron does not depend
on the spin and w, = (p*/2m) — p is a function of |pj2. In the second and third lines of
(32) are represented the coefficients Vi (g, —¢', —¢", —g+ ¢ + ¢") which describe
the coupling between the different auxiliary fields. The graphs which the coefficients
Vit?, VP and V3B, VP yield cancel pairwise and therefore they are not drawn in
(32). Using (19) we obtain:

/ ) {(A; U yy sp-e o i=1,2

i (g — r, ' —g+g —g)= L

i(g.—q q+q'—q HL, Uyt 20701 i=3.4
Vi e~ g, —q+g' + gV = —A, Uy ) (y) =i 07

. ] L » 1

Vg, —q'.—q", ‘“‘I"“I""qﬂ)=i%ﬁhilz,uz(}’f)“(}’a)zzﬁ'_q‘ v 5={2 (33)

. o .1
O (O e S L

with =i, 4; = I (compare (7)) and

. 1 1 a) 1
@-¢q = —_ - = —_
27 5V§: {wp—is,, ex"(qap w, +iE,
3 1 a) 1 }
—ay 2y ‘g ) — ) 34
XEXP((Q ")ap) wp__i&neXP((q "“)ap 0, +IE, (34)

Obviously, the sum X, yields the main contributions for ¢’ = ¢’ = ¢". Thirdly, in order
to write down the complete gauge-invariant action in our approximation we still have to
calculate the @, g7 A and @, @ A? graphs,

One can obtain the resuits from (26) by a minimum substitution or by straightforward
calculation using (19). The coefficient Vi'(g, —¢;:4,), v =1,2,3 at ¢ 1Qer(a,,
for example, is given by

R v
Vi gAY = - -q+—*<f -
g-p { g-p

_Kig( 1 1 _
o m ey
+ 1 1 )

(@, — &) (0,_, +iE)"" )

(35)
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By restriction on terms linear in g we get

K; w, 1 (q p)
(q _q’A ) ﬁvg{ (w +€2)2QV (wp+§2)2 pv
- & (q p) }
—F = =123 36
(a) +Ez)3 Pv+0((q )] v (36}
with the upper sign for i = 1,3 and the lower sign for i = 2, 4. The constants K, are

abbreviations:
K, = =A,U(v)? (I/m) i=1,...,4, (37)

where the minus sign is valid for / =2,4. The coefficients V4(q, —q;4,.4,) at
o) o] (g)A A, withy, u = 1,2, 3result from five graphs, e.g.,

Vil - ¢: A, A,) = -»{;;:;_}-)— + %—»
+ + —»-(:;.}—- + @-&fﬁ—» . (38)

We restrict ourselves to graphs where all external momenta are equal to zero. Using
(19) it follows that

) e 1 wi — E2
i . e —p =21
V§(0,0,4,,4,) = —K, BV = {(w_ +§2),2 Py

I w,
(w +§2)2 Pvpu (wp+r2)3 mép#}- (39)
Now we can write down the complete gauge-lnvariant effective action
4

M., @24} = EfV"(q, —q;A= 0)+2V"(q -0, A,)A,

=1 r=1
+ 3 VH0.0,4,, 44,4, ) lo (0)f

pip=1

+ 2 Vi1(0,0,0,0)(l¢, (@)@; (~9))}

=1
+VE1(0,0,0,0)|¢1 (@) *l@ 2 (9)]?

+ 2 V8o ()P e (~9)es.(q)
i=1

3

+ 2 Vi, ()~ 00 (0. (~9) —[gx AL (40)
i=1
The coefficients in (40) are given by (31), (36), (39) and {33) whereby in (33) all external
moments and the electromagnetic field are taken to be equal to zero. The restriction
on |g|<1 means that here we regard long-range order and ferromagnetic (g = 0) or
paramagnetic solutions only.
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The condition for the minimum effective action yields generalized Ginzburg-Landaua
equations according to (24).

4. Discussion

The investigations of the Ginzburg-Landau functional (40) and of the generalized
Ginzburg-Landau equations allow discussion of the phase transitions of the Hubbard
model (3}. The ¢g-fields play the role of order parameters. Since the s-band Hubbard
model shows particle-hole symmetry (see, e.g., [2]) the considerations can be restricted
to band fillings 0 < n <1, i.e. for the order parameters ¢, (compare (22)) we have
. 2=1,i=1,...,4.

As an example we consider A, =1, A, =A4; =1, =0 in equation (7) and use an
attractive coupling constant—this means that we put U = —g with —g > 0. Of course,
we obtain the well known results of the BCs theory [6].

From the vanishing of the coefficient V1'(g, —¢; A = 0), for g— 0 the transition
temperature T, _follows in the usual manner. One introduces the density of states

1 x

where d is the dimension of the problem and get at the Fermi surface @ =
P f2m — i = Qusing (31), (28) and (17):

a=p(0) = E”—2p(0 E

41
2n + 1 (41)
Since one assumes in the BCS theory that the attractive coupling constant g is caused by
interaction with phonons, one usually introduces a cut-off #,,,, in the sum over #
equivalent to a cut-off in the phonon energy spectrum at the Debye energy wp =
kpT(2ny,,, + 1) and then it foliows that

n max

1= p(O)1n (22 4) “2)

aq =

where In y = C = 0.577 is the Euler constant. For b (compare (29)}, for example, one
obtains at the Fermi surface

b ~-——p(0)y§(3 ) ——= s T X (43)
where £ (3,4) = =7, (7 + $) 7" is the Riemann zeta function and where
[ 99, 5.0, = .utp" (44)

The coefficient at ¢ ,_|? in the Ginzburg-Landau functional vanishes according to the
theory of phase transitions at the critical temperature (see, e.g., {8]). One sees that,
regarding (31), in order to find the critical temperature one needs a cut-off in the energy
spectrum. It yields

T, = 4ywp/mky expl —1/gp(0)] (45)
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i.e. we obtain the well known formula of the 8cs theory. We remark that this physical
result is stiil independent of the constants y; as expected.

With the critical temperature T, one can write for the coefficient at |, _|? in the
effective action

VE(0,0;4 = 0) = (v,)°g0(0} In(T/T,). (46)

The coefficients V" in the effective action (40) are at the Fermi surface for all com-
binations of A, with 3., A, = 1 proportional to

1 ® dw . 1
/—32;4 p(0) fnmm= p(0) C(3s%)m (47)

and for the quantities (36) and (39) it yields in the same approximation

w2 .
ig, ~q:A,) = {31U(/1) fehme. i:: _ l 24 (48)
and
Vi(g. —q: A, A,) = {AIU(yl)z(ez/m)Cavu fori=1 9)
0 fori=12,3,4
with
c = tup(0)E(3, H[1/ (ks Tm)?). (50)

Equations (48) and (49) show that near the Fermi surface and for || < 1 the electro-
magnetic field is coupled at the auxiliary field only, which describes a particle of mass
2m and charge 2e (Cooper pair), and the coefficient at ¢, @} for A # @ reads
A Uy e(1/4m)g — 2eA)?. The Ginzburg-Landau equations (24) form for this special
case a coupled differential system for the @-fields, too.
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