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A generalized Ginzburg-Landau functional for systems 
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Abstract. Usingthe theoryoteffective action agenerdired Ginzburg-Landau functional for 
systems with correlation is derived. The Bardeen-Cooper-Schrieffer theory is obtained as 
a special case 

1. Introduction 

The discovery of high-temperature superconductivity in La-(Ba, Sr)-Cu-0 [I] and in 
other oxide systems has led in recent years to further extensive studies of the Hubbard 
model [2] to examine whether this model is suitable for explaining the magnetic and 
superconducting behaviour of these systems (see, e.g., [3]). Since apart from special 
cases [4] the single-band Hubbard model is not exactly solvable in dimensions higher 
than one, it is necessary to use approximations. 

In this paper we apply the method of effective action (see, e.g., [S, 61) and obtain a 
Ginzburg-Landau functional which depends on two real and two complex fields and 
which makes it possible to discuss the phase transition of our model. The Ginzburg- 
Landau functional for Bardeen-Cooper-Schrieffer (BCS) superconductors is obtained 
as a special case. 

2. Model 

The s-band Hubbard model in the field representation is given by 

H = H , + H ,  

and 

A, = U 1  d ~ r ~ ~ ( r ) $ i ( r ) t ) ~ ~ r ) ~ ~ )  
V 

where t),i ( r )  and $&) arethe creation and annihilation operators for an electron with 
spin oa t  the position r ,  -VZ/2m is the kinetic energy operator of an electron ( h  = 1) and 
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p is the chemical potential. V denotes the periodicity volume; this means that we use 
periodical boundary conditions. GI describes the correlation, i.e. U is the repulsion 
energy between electrons with spin T and I at the same position. I f  we use instead of U 
an attractive coupling constant -6 < 0 between T and .1 spin electrons we obtain the 
BCS model [6].  

The interaction with an electromagnetic field is introduced in a gauge-invariant way 
by minimal substitution (c = 1): 

V+V-ieA (2) 
and the vector potentialA(r) is treated as an external source. (The charge of an electron 
is denoted by e.) Then the Hamiltonian operator 

+ U jv  d3r  $; (4 (r )  4 J ( 4  $ ~ ( r )  (3) 

is invariant under the gauge transformation 

(4) 
$.,(r)-+ e x p ( i e W )  $,A4 = $Xr) 

A(r)+A(r) + VA(r) =Ab(r). 

This means that $; and A’ have the same equation of motion as $, and A.  (The phase 
A(r) does not depend on the spin because of the structure of Q0.) 

3. Derivation of a generalized Ginzburg-Landau functional 

Using the holomorphic path integrals [7] and Wick rotation the partition sum is given 
by 

z = tr {exp( -BA)} = I a $ % ~  exp(-S[{G, v}]) (5) y(o)= - V y )  
u’(o)=-vLR) 

withp = l/kJand 

where tp and $ are the Grassmann variables. The four-fermion interaction term in 
(6) can be expressed in terms of complex scalar fields (the Hubbard-Stratonovich 
transformation): 
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where we use the notation 

I d4x = 1,’ d r  d’r 

and where the constants Ai ,  i = 1, , . , ,4,  fulfil the condition X:=l Ai = 1. The constants 
Ai are a consequence of the arbitrariness of the decomposition of the four-fermion term. 
(Further QI-fields do not occur because terms with dtGr and $r$r are zero.) The fields 
q3  and q4 are real, obviously. The fields q,, q f  describe a Cooper pair, the fields 
qz, qz correspond to the transverse components SI, S- of the spin density, q3 denotes 
the density of electrons and q4 is the longitudinal component S’of the spin density. The 
normalization constants Ci are given by 

C i =  9 q t 9 q i e x p  - ( Y ~ ) ~  d4x9):qi i = 1 ,  . . . ,  4 (9) 

where we need the constants yi to ensure the correct dimension of the auxiliary fields. 
Of course, the physical results have to be independent of these constants. 

j ( I  1 
Now we introduce sources for the auxiliary fields in the usual way and obtain 

a i  
az 2m 

v,, 
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Putting all sources to zero we get the partition sum 

z = Z[{jli*lJ,=,*.o. 

L = L , + L ,  

For the Lagrange function in (10) given by 

we have (compare (6)) 

'and 

4 

+E (r,)'vT(k,n)rpi(k,n)). (16) 
1 = 1  

Thus the propagator of an electron with spin U and four-momentum (k ,  n) is given by 

l / (wk -iEn) with w k  = k 2 / 2 m - p  and En =(n/P)(2n+ I), n = O , i l ,  ... 

and the propagator of the auxiliary fields is given by 
(17) 

1 /CY I Y for i= 1,. ., ,4. (.W 
Thepropagatorsof q;-fieldsdo notdependon the four-momentum because the Lagrange 
function (13) does not contain the corresponding kinetic energy terms. One obtains 
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the Feynman rules by substitution of the Fourier decomposition of the fields in the 
interaction Lagrange function (14). We use the following notation: 

931 932 q 3  934 VT 1y1 A - field + =m= * -3- =+== 4- 

propagator 1 1 1 1 1 1 - - ~ - 
( Y 2 I 2  ( Y d 2  ( Y d 2  w k  - iE,, wk - iE,, 

In this theory any connected Feynman graph consists of a single loop, on which any 
number of vertices can be placed. The generating functional for the connected Green 
functions is defined by 

W . i * l l  = WTli,i*Il). (20) 

The Legendre transformation of w[{j. j ' } ]  reads 
4 

r[{q,, q:;A}l=/d'x (j,vE + ~ ? i , i ? ) - " H i . i * H  (21) 
i = l  

where q i , ( y )  means the expectation value of q i ( y )  in the presence of the sources ji(x): 

93&) = ( 9 ? i ( X ) ) j i + 0  (22) 

Z =  ~[{i,Pllj,=,~=,,, = exp{ - r[h,,p: ;411,,=,:.=j~=o (23) 

and r[{s,,pI ; A ] ]  is the effective action. The partition sum is then 

andasequationsfor(q,(n))j,=o = qp,(x),i = 1 , .  . . ,4weobtaingeneralizedGinzburg- 
Landau equations: 

[ J ~ / J ~ , , , ( X ) ] I , ~ = , ; = ~ = O ,  [ar/ep,~(x)][i,=j;=o=O, i = 1 ,  ..., 4 (24) 

In order to calculate the Ginzburg-Landau functional r[{q,, 93: ;A}] we consider the 
generating functional for the proper or one-particle irreducible diagrams 

that we can find by perturbation theory. We consider all one-loop diagrams with two 
and four externallines and weare onlyinterestedingraphsfor which the sumofexternal 
momenta is zero. (Diagrams with an odd number of 93-lines do not give contributions 
for temperatures T #  0.) 
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We compute firstly the coefficients pi(q, -9; A = 0) proportional to q,Jq)qJ-q) 
in ~[{pq,,q:;A}]. Using (lo), (17) and (19) we have with p = ( p ,  n )  for A = 0 and 
q + q' = 0 the following two-point graphs: 

I 

q - P  P - q  

The sum over the internal lines yields for all diagrams of (26) the same result: 

with 
1 1 a=-E 43v ,," w?p + 52, 

and 

We restrict ourselves to second-order terms inq because the terms with (q\ 4 1 give the 
main contributions to the sum 2;.  

The last two graphs in (26) have to be counted twice since for the fields cp3 and q4 
twoverticesexist (compare (19)). Thefactor2cancelswith the factor i from the product 
of the vertices. Both graphs which yield the coefficient Vi4  cancel each other and 
therefore they are not drawn in (26). Thus we obtain for the coefficients 

V f ( q ,  -q,;A = 0) = TA,L'(y,)'(u + b ( g ) ' )  

Vy(q ,  -q;A = 0) = ( ~ i ) ' [ l  k ~ . ,U(U  + b(q)')]  

(30) 

(31) 

where the upper sign is valid fori = 1,3  and the lower sign for i  = 2 , 4 .  The coefficients 
V $ ( q .  -9; A = 0) at lcptJq)12 in the effective action are 

with the same convention over the signs as in equation (30). 

following diagrams: 
Secondly, weconsiderthefour-pointtermsin r[{q.,. qf;A}]forA = O.We havethe 
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By restriction on terms linear in q we get 

with the upper sign for i = 1 ,3  and the lower sign for i = 2,4 .  The constants K,  are 
abbreviations: 

K ,  = * A ; U ( y J 2  (I,") i = l ,  . . . ,  4, (37) 
where the minus sign is valid for i = 2.4. The coefficients Vi(4, -q;A,. A,) at 
q,c(q)qE(q)AvAp with u , p  = 1,2,3resultfromfivegraphs,e.g., 

We restrict ourselves to graphs where all external momenta are equal to zero. Using 
(19) it follows that 

(39) - 1 UP 
+ 2 2 P.Pu - E 2 ) 3  mL). 
(U; + E " )  (w; + 3" 

Now we can write down the complete gauge-invariant effective action 
4 .  3 

! = I  \ " = I  

j 

r[{qj,.q,T;A)]= X (Vi'(q,-q;A=O)+ V5'(q.-q;A.)A, 

+ *,,,=I 2 v ~ ( 0 , 0 ; A . , A , ) A . A , ~ I g , , ~ ( q ) / 2  

P 

+ E ~ ~ ~ ~ , ~ ~ ~ . o ~ ~ l g , , ~ ~ ~ ~ q , , , ~ - ~ ~ ) ~  

( ~ ~ o ~ o , o ) l ~ l , ( n ) l ~ l ~ * ~ ~ ~ ~ l ~  

+ E  ~9'3191,(4)/2~3,(-4!9)3,(4) 

+ v b 4 " q j , , ( q ) q j , ~ ( - q ) ( P 4 , ( q ) Q ? ~ , ( - ~ ) - 4 [ 4 X A l ~ .  (40) 

I =  I 

+ vy12 

, = I  

3 

,=1 

The coefficients in (40) are given by (31), (36), (39) and (33) whereby in (33) all external 
moments and the electromagnetic field are taken to be equal to zero. The restriction 
on 141 Q 1 means that here we regard long-range order and ferromagnetic (q = 0 )  or 
paramagnetic solutions only. 
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The condition for the minimum effective action yields generalized Ginzburg-Landau 
equations according to (24). 

4. Discussion 

The investigations of the Ginzburg-Landau functional (4.0) and of the generalized 
Ginzburg-Landau equations allow discussion of the phase transitions of the Hubbard 
model (3). The q-fields play the role of order parameters. Since the s-band Hubbard 
model shows particle-hole symmetry (see, e.g., [2]) the considerations can be restricted 
to band fillings 0 S n S 1, i.e. for the order parameters qic (compare (22)) we have 
/ qJ2  s l , i =  1, , .  . , 4 .  

As an example we consider I ,  = 1, A 2  = I 3  = A 4  = 0 in equation (7) and use an 
attractive coupling constant-this means that we put U = -g with -g > 0. Of course, 
we obtain the well known results of the BCS theory [6]. 

From the vanishing of the coefficient Vi‘(q ,  -4; A = 0). for q+  0 the transition 
temperature TLC follows in the usual manner. One introduces the density of states 

where d is the dimension of the problem and get at the Fermi surface w = 
p2/2m - p = 0 using (31), (28) and (17): 

Since one assumes in the BCS theory that the attractive coupling constant g is caused by 
interaction with phonons, one usually introduces a cut-off nmar in the sum over n 
equivalent to a cut-off in the phonon energy spectrum at the Debye energy wD = 
kBTz(2n,, + 1) and then it follows that 

where In y = C = 0.577 is the Euler constant. Forb  (compare (29)), for example, one 
obtains at the Fermi surface 

where 5 (3, i) = C;=, (n  + i)-? is the,Riemann zeta function and where 

1 dQp pVpr = 6,,3~’. (44) 

The coefficient at Iq in the Ginzburg-Landau functional vanishes according to the 
theory of phase transitions at the critical temperature (see, e.g., [SI). One sees that, 
regarding (31), in order to find the critical temperature one needs a cut-off in the energy 
spectrum. It yields 

Tic = 4Yw~/Jrks exP[-l/W(o)] (45) 
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i.e. we obtain the well known formula of the BCS theory. We remark that this physical 
result is still independent of the constants yr as expected. 

With the critical temperature TIC one can write for the coefficient at 1q 1 , 1 7  in the 
effective action 

VY(0,O;A = 0) = (vJzeP(o) In(TP,J .  (46) 
The coefficients V;" in the effective action (40) are at the Fermi surface for all com- 
binations of A, with 2f=l A ,  = 1 proportional to 

and for the quantities (36) and (39) it yields in the same approximation 

and 

AI u(y,) ' (e2/m)c6,,  fori = 1 
V $ ( q .  -q;A, , .A, )  = (49) 

for i=2 ,3 ,4  

with 

c = Q W ( O ) C ( ~ ,  f)ii/(lis rq21. (50) 
Equations (48) and (49) show that near the Fermi surface and for 141 Q 1 the electro- 
magnetic field is coupled at the auxiliary field only, which describes a particle of mass 
2m and charge 2e (Cooper pair). and the coefficient at q,cqft for A # 0 reads 
A I  U(yl)'c(l/4m)(q - 2eA)'. TheGinzburg-Landauequations(24) form for thisspecial 
case a coupled differential system for the q-fields, too. 
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